SCIENTIFIC PROGRAM

Sunday, June 21

18.00-20.00	Registration	("Palais des congrès" – Arcachon)	
-------------	--------------	-----------------------------------	--

19:00-21:30 Welcome party

Monday, June 22

• •				
8:30-9:00	Opening - C. Delmas, Chairman			
9.00-9:40	The rechargeable lithium battery: where do we go from here? **Peter Bruce - University of Oxford (UK)**			
9:40-10:20	INV2	Interface design for advanced oxide-based all-solid-state batteries Yasutoshi Iriyama - Nagoya University (Japan)		
10:20-10:50	Coffee	Break		
10:50-12:30	Poster	s session		
12:30-14:30	Lunch	break		
14:30-15:30	SOLID	STATE		
(8 min each) 001		Sintering of phase pure garnet $Li_7La_3Zr_2O_{12}$ nanoparticles obtained via a solid state route from a highly reactive precursor M. Senna - Keio University (Japan)		
	O02	All-solid-state Li and Li-ion thin film batteries, miniaturized power sources dedicated to microsystems and internet of things B. Pecquenard - ICMCB-CNRS, Univ. Bordeaux, (France)		
	O03	Preparation of Idiomorphic Active Material Crystals/Li _{2-x} C _{1-x+y} B _x O _d Glass Hybrids by Using Flux-growth Approaches and Characterization of Their Allsolid-state LIBs properties Z. Nobuyuki - Shinsu University (Japan)		
	O04	Structural behavior and fast lithium-ion conduction in Li4SiO4-Li3PO4 solid electrolytes Y. Deng - Laboratoire de Réactivité et Chimie des Solides, Amiens (France)		
	>>	General discussion		
15:30-16:20	INTERFACES			
(8 min each)	O05	Cycling-Related Electrolyte (De-)Composition in an EC/EMC Based Battery System P. Novak - Paul Scherrer Institute (Switzerland)		
	O06	What happens at the interface between interphase and electrode? A potential discussion motivated from photoelectron spectroscopy characterizations		

J. Maibach - Ångström Laboratory, Uppsala University (Sweden)

O07 Development of Novel Pyridine-Boron Trifluoride Electrolyte Additives for Lithium-Ion Batteries

M. Nie - Dalhousie University (Canada)

>> General discussion

16:20-16:50 *Coffee Break*

16:50-17:50 Li-SULFUR

(8 min each) O08 Improvement of Li-Sulfur batteries with zeolites as polysulfides sorbent: an

XPS study

R. K. Chellappan - IPREM-CNRS, University of Pau (France)

O09 Lithium sulfur rechargeable batteries utilizing solid electrolytes

R. P. Rao - National University of Singapore (Singapore)

O10 Revisiting sulfur electrochemistry in non-aqueous electrolytes: Impact on

lithium-sulfur cell design and performance.

M. Cuisinier - Qatar Environment and Energy Research Institute (Qatar)

O11 Degradation of LSB Electrodes investigated with X-ray Phase Contrast Tomography

L. Zielke - IMTEK University of Freiburg (Germany)

>> General discussion

17:50-19:00 Posters session

19:00 Welcome Cocktail

Tuesday, June 23

The superstructure of the $A_{2/3}MPO_4$ phases (A = Li, Na, M = Fe, Co), key 8:30-9:10 INV3 intermediates in the reaction mechanism of A_xMPO_4 systems

Florent Boucher - Institut des Matériaux Jean Rouxel, Nantes (France)

9:10-10:20 **OLIVINE**

(8 min each) O12 What is the rate limiting charge transfer mechanism in LiFePO₄ electrodes?

How do individual LiFePO₄ grains transform depending on the cycling rate? Answers from in operando Neutron Depth Profiling and in operando Micro Beam Diffraction

M. Wagemaker - Delft University of Technology (The Netherlands)

O13 Relationship between Reaction Distribution and Ionic Conductivity in

LiFePO₄ Composite Electrode

Y. Orikasa - Kyoto University (Japan)

O14 Power Hysteresis in LiFePO₄ cells

A. Gruhle - Daimler AG, Ulm (Germany)

O15 Phase evolution in single-crystalline LiFePO₄ in a micrometer-sized battery

followed by in-situ scanning transmission X-ray microscopy

N. Ohmer - Max Planck Institute for Solid State Research, Stuttgart (Germany)

016

		Plasma Sintering V. Seznec - Laboratoire de Réactivité et Chimie des Solides, Amiens (France)		
	>>	General discussion		
10:20-10:50	Coffee	ee Break		
10:50-12:00	SPINEL			
(8 min each)	017	Phase Transition Dynamics in LiNiMnO micro-particles H. Arai - Kyoto University (Japan)		
	O18	The Mechanism of Mn and Ni Dissolution at the Li _x Ni _{0.5} Mn _{1.5} O _{4-d} / Organic Carbonate Electrolyte Interface R. Kostecki - Lawrence Berkeley National Laboratory (USA)		
	O19	Atomic scale drivers for the order/disorder transition of LiNiMnO and effect on the electrochemical properties M. Casas-Cabanas - CIC energiGUNE (Spain)		
	O20	Oxygen partial pressure and temperature dependence of electrical conductivities in LiMnNiTiO (x=0, 0.5 and y=0, 0.5) S. Abe - Tokyo City University (Japan)		
	021	Characterization for the LiNi _{0.5} Mn _{1.5} O ₄ Prepared at Various Conditions S. H. Wu - Tatung University (Taiwan)		
	>>	General discussion		
12:00-14:00	Lunch l	break		
14:00-14:40	INV4	Atomic Resolution STEM and Spectroscopic Characterization of Li Ion Battery Related Crystals Yuichi Ikuhara - The University of Tokyo (Japan)		
14:40-16:10	Poster	Posters session and Coffee Break		
16:10-17:50	POLYA	NION		
(8 min each)	O22	Fe defects control Na ⁺ pathways and power performance in alluaudite-type low cost high voltage cathode material Na _{2+d} Fe _{2-d/2} (SO ₄) ₃ <i>R.P. Rao</i> - National University of Singapore (Singapore)		
	O23	Na ₃ V ₂ (PO ₄) ₂ F ₃ : crystal structure and phase transformations upon Na ⁺ extraction of a promising positive electrode M. Bianchini - Institut Laue-Langevin, Grenoble (France)		
	O24	Determining performance-limiting mechanisms in fluorophosphate sodiumion battery cathodes via transition-metal substitution and first-principles calculations		
		I. Matts - Massachusetts Institute of Technology (USA)		
	O25	Low-polarization Na-ion battery with chromium-substituted sodium vanadium phosphate cathodes and sodium titanium phosphate anode <i>P. Lavela</i> - Departamento de Quimica Inorganica e Ingenieria Quimica, Cordoba (Spain)		

High energy density of binder-free sintered electrodes made by Spark

O26 Sodium-Ion Diffusion and Voltage Trends in Phosphates Na₄M₃(PO₄)₂P₂O₇ (M = Fe, Mn, Ni, Co) for Possible High Rate Cathodes

S. Wood - University of Bath (United Kingdom)

O27 Sodium Intercalation into the Iron Hydroxysulfate NaFe₃(SO₄)₂(OH)₆: a Topotactic Reversible Reaction from a Crystalline Phase to an Inorganic Polymer-like structure

V. Pralong - Laboratoire de Cristallographie et Sciences des Matériaux, Caen (France)

O28 Li₂Cu₂O(SO₄)₂: a possible electrode for sustainable Li-based batteries showing a 4.7 V redox activity vs. Li⁺/Li⁰

M. Sun - Collège de France, Paris (France)

>> General discussion

17:50-19:00 Posters session

Wednesday, June 24

Ion Dynamics in Electrodes and Electrolytes as Characterized by Magnetic
8:30-9:10
Resonance Spectroscopy and Imaging
Gillian Goward - McMaster University, Hamilton (Canada)

9:10-:10:40 **NEGATIVE-OTHERS**

(8 min each) O29 MXene Nanosheets for Negative Electrode Materials of Sodium-Ion Batteries

M. Okubo - The University of Tokyo (Japan)

O30 On the high and low temperature performances of Na-ion batteries: Hard carbon a case study

A. Ponrouch - Institut de Ciència de Materials de Barcelona (Spain)

O31 Characterisations and electrochemical performances of hard carbons in sodium ion batteries

V. Simone - Univ. Grenoble Alpes, CEA, LITEN (France)

O32 In operando XRD/electrochemistry investigation of lithium insertion into anatase-derived titanium oxyfluoride TiOF₂

K. Guérin - Institut de Chimie de Clermont-Ferrand (France)

O33 Hydrides as novel high capacity anodes for lithium batteries

S. Brutti - Università della Basilicata (Italy)

O34 Electrochemical mechanism and high performances of Bi and Mg₃Bi₂ as negative electrodes for Mg batteries

F. Murgia - Institut Charles Gerhardt, Montpellier (France)

>> General discussion

10:40-11:10 *Coffee Break*

11:10-12:10 Li-AIR

(8 min each) O35 Introduction of additives to nonaqueous Li-O₂ cells

D. Aurbach - Bar Ilan University (Israel)

O36 Understand the reaction mechanism and re-chargeability of Li-O₂ battery via Electrochemical Quartz Crystal Microbalance study

F. Bardé - Toyota Motor Europe (Belgium)

Operando XRD view on the structure of Li₂O₂ during charge and controlling the morphology using NiO seed crystals to enhance cycle life time of Li-air batteries

S. Ganapathy - Delft University of Technology (The Netherlands)

O38 Nanostructured Oxygen Selective Membrane for Li-Air Battery Operating In Ambient Air

J. Amici - Politecnico di Torino (Italy)

>> General discussion

12:10-20:00 *FREE AFTERNOON*

20:00 BANQUET (« Château Smith Haut Laffite » Martillac)

Thursday, June 25

Improving the rate capability of Li (Na)-ion batteries by constructing porous carbon network

8:30-9:10

INV6

Yan Yu - University of Science and Technology of China and Max Planck Institute for Solid State Research, Stuttgart (Germany)

9:10-10:30 CHARACTERIZATION

(8 min each) O39 Relaxation effects of the negative electrode TiSnSb using ¹¹⁹Sn Mössbauer and ⁷Li MAS NMR spectroscopies

N. Dupré - Institut des Matériaux Jean Rouxel, Nantes (France)

O40 Chemical and electronic properties of thin film layered cathode materials: electron spectroscopy, X-ray diffraction and electrochemical studies

G. Cherkashinin - Technische Universität Darmstadt (Germany)

G. Cherkushinin - Technische Oniversität Darnistaat (Germany)

O41 Operando Magnetic Resonance Spectroscopy and Imaging of batteries E. Salager – CEMHTI, Orléans (France)

O42 NAPXPS- a surface sensitive method for studying electrochemical interfaces in operando

M. Hahlin - Ångström laboratory, Uppsala University (Sweden)

O43 Operando X-ray Absorption Spectroscopy of NCA Particles

L. Nowack - ETH Zurich (Switzerland)

O44 Monitoring of the SEI-Evolution of Uncoated and Carbon-Coated Si Nanoparticles by Transmission Electron Microscopy and Electrochemical Impedance Spectroscopy

K. Van Havenbergh - EMAT - Antwerp (Belgium)

>> General discussion

11:00-11:40	INV7	New High Capacity Electrode Materials for Rechargeable Li/Na Batteries Naoaki Yabuuchi - Tokyo Denki University (Japan)		
11:40-12:30	Na-LAYERED			
(8 min each)	045	Irreversible reaction in NaCoO ₂ by insertion and extraction of sodium T. Kobayashi - Central Research Institute of Electric Power Industry (Japan)		
	O46	P2-type: crystallography, crystal chemistry, and how to avoid Na ⁺ ordering M. Avdeev - ANSTO (Australia)		
	047	A Comparison of O3-NaFe $_x$ (Co $_{0.5}$ Ni $_{0.5}$) $_{1-x}$ O $_2$ and O3-NaFe $_x$ Co $_{1-x}$ O $_2$ for Na-ion Battery Positive electrodes J. S. Thorne - Dalhousie University (Canada)		
	O48	Solid-state NMR and DFT: powerful tools for the study of the processes occurring upon cycling of sodium transition metal oxides R. Clément - University of Cambridge (United Kingdom)		
	>>	General discussion		
12:30-14:30	Lunch	break		
14:30-16:10	Li-LAY	ERED		
(8 min each)	O49 Understanding the structure of Li-rich layered oxide for lithium H. Yu - Beijing University of Technology (China)			
	O50	Developing new electrolyte systems for high voltage cycling and in situ neutron diffraction experiments: Highly concentrated electrolytes R. Petitbon - Dalhousie University (Canada)		
	O51	Understanding of Li-rich Layered Oxide Cathode Materials for Lithium Ion Batteries B-J. Hwang - National Taiwan University of Science and Technology (Taiwan)		
	O52	Analysis of the voltage decay in Li-Rich materials J-F. Colin - Univ. Grenoble Alpes, CEA, LITEN (France)		
	 O53 Improvement of the high temperature cyclability of LiNi_{0.5}Co_{0.2}Mn₀ flake-shaped Alumina surface coating. C.E. Liu - Industrial Technology Research Institute (Taiwan) O54 Redox plateau decay in extended cycling of Li₂Ir_{1-x}Sn_xO₃ positive elematerials E. McCalla –Collège de France, Paris (France) O55 The role additive on improving performances of Lithium-Rich cathem. Anouti - Physico-chimie des Matériaux et des Electrolytes pour l'Energies (France) 			
	O56	Electrochemical performance of a layered-spinel integrated Li[Ni1/3Mn2/3]O2 as a high capacity cathode material for Li-ion batteries		

P. K. Nayak - Bar-Ilan University (Israel)

>> General discussion

16:40-17:50 **NEGATIVE-Si**

(8 min each) O57 Stress-Voltage Coupling in Si Alloys
M. Obrovak - Dalhousie University (Canada)

O58 Coupling surface imaging, spectroscopy and focused ion beam for a better understanding of lithiation mechanisms of silicon electrodes for Li-ion battery applications.

A. Bordes - Laboratoire de Physico-Chimie des Surfaces, Chimie ParisTech, (France)

O59 Influence of silicon and carbon contents on the microstructure and electrochemical performances of Si/Ni_{3.4}Sn₄/Al/C composites used as negative electrodes for Li-ion batteries

T. Azib - Institut de Chimie et des Matériaux Paris Est (France)

O60 Benefits of silicon carbonitride matrices on the cycling stability of silicon anodes in

D. Vrankovic - Technische Universität Darmstadt (Germany)

O61 Synergistic effects of Ge and Si on the performances and mechanisms of Ge_xSi_{1-x} electrode for Li-ion batteries

D. Duveau - Institut Charles Gerhard, Montpellier (France)

>> General discussion

Friday, June 26

8:30-9:10	INV8 Linking electrode kinetics to crystallography and chemistry Anton Van der Ven - University of California Santa Barbara (USA)	
9:10-9:50	INV9 X-ray Microscopies for Studying Lithium Ion Batteries Vanessa Wood - ETH Zurich (Switzerland)	
9:50-10:10	Coffee break	
10:10-12:00	Discussions on transverse topics Conclusion	

Posters List

N°	Topic	Author	Title
P01	Solid State	Burbano Mario	Structure and ionic conductivity of lithium garnets
P02	Solid State	Flamary Florian	Iron disulfide, a high performance positive electrode material in thin film lithium batteries.
P03	Solid State	Kimura Yuta	Evaluation of Li Chemical Potential of Mechanically Stressed Li Ion Batteries Cathodes
P04	Solid State	Loho Christoph	Potential of Novel CO₂-Laser Assisted Chemical Vapor Deposition for All-Solid-State Thin-Film Li-Ion Battery Research
P05	Solid State	Pelé Vincent	Iron molybdate as an electrode material for Na and Li thin films batteries
P06	Solid State	Rawlence Michael	Solid State Li ₇ La ₃ Zr ₂ O ₁₂ Thin Film Electrolyte by Pulsed Laser Deposition: Deposition, Crystallization, Near Order Characteristics vs. Lithiation
P07	Solid State	Ritter Helene	Investigations on Lithium/LIPON interfaces for Li-ion microbatteries
P08	Solid State	Tarhouchi Ilyas	$Li_{10}SnP_2S_{12}$: an electrolyte and electrode material for all-solid state batteries?
P09	Solid State	Katoh Yuki	Ionic conductivities of solid solutions with LGPS-type crystal structure
P10	Interface	Chen Zonghai	Investigating Parasitic Reactions in Lithium Batteries
P11	Interface	Downie Laura	Effect of electrolyte solvents and additives at high voltage studied using isothermal microcalorimetry and ultra high precision coulometry
P12	Interface	Freunberger Stefan	Long chain alkyl carbonates as SEI modifiers: Ion transport, structure and electrochemistry of the parent electrolytes
P13	Interface	Gonser Andreas	Slurry based composite electrodes vs. Si thin films - SEI investigations
P14	Interface	He Minglong	In situ Gas Analysis of Li₄Ti₅O₁₂ Based Electrodes at Elevated Temperatures
P15	Interface	Horstmann Birger	Morphology of Solid Electrolyte Interphase: A Model Based Approach
P16	Interface	Koyama Yukinori	Density functional study on LiCoO₂ surfaces
P17	Interface	Schulz Natalia	XPS analysis of composite cathodes: SEI-formation at different depth and spectral interpretation
P18	Interface	Späth Thomas	Towards a more fundamental understanding of SEI formation: LiCoO ₂ -solvent interaction studied with surface science methods
P19	Interface	Suzuki Kota	Analysis of Coating Effects on LiMn₂O₄ Epitaxial Thin Film Electrode
P20	Li- sulfur	Conder Joanna	Taming the polysulfide shuttle in Li-S battery
P21	Li- sulfur	Moog Iona	Li-S batteries in Johnson Matthey
P22	Olivine	Anne Henri	New insights into the kinetics of Na insertion and extraction into the FePO $_4$ /NaFePO $_4$ system
P23	Olivine	Gounder Adiel	Synthesis and Characterization of LiMnPO₄ Cathode Material Prepared by a Novel Sol-Gel Method
P24	Olivine	Kwon Nam Hee	Opportunities and Risks of Nano-LiMnPO₄: ionic diffusivity and life cycle assessments
P25	Olivine	Manzi Jessica	Self-discharge in LiCoPO₄ electrodes
P26	Olivine	Mori Takuya	Origin of High Rate Capability of LiFePO₄ Investigated by Time- resolved X-ray Diffraction at Various Operating Temperatures
P27	Spinel	Boulet Lucien	Operando neutron powder diffraction of LiNi $_{0.5}$ Mn $_{1.5}$ O $_4$ vs. graphite performed in a cylindrical cell
P28	Spinel	Dräger Christoph	Titanium substituted LiCoTi _x Mn _{1-x} O ₄ : in situ powder diffraction on high-voltage spinels

LiBD-7 2015 – "Electrode materials" Arcachon, France June 21-26, 2015

P29	Spinel	Komine Shigeki	Electrochemical Properties of Thick, Dense Single Crystal Electrodes Fabricated by Flux-coating
P30	Spinel	Lee Jung Hwa	High electrochemical performance of high voltage LiNi _{0.5} Mn _{1.5} O ₄ by decoupling the Ni/Mn disordering from the presence of Mn ³⁺ ions
P31	Spinel	Sonoda Takashi	Development of Acetylene Black for High voltage based Lithium-ion secondary battery
P32	Spinel	Seidel Matthias	Characterization of LiNi _{0.5} Mn _{1.5} O ₄ synthesized using different acetate/nitrate-precursors
P33	Spinel	Younesi Reza	Electrochemical and surface properties of the high voltage spinel cathode material LiCr _{0.2} Ni _{0.4} Mn _{1.4} O ₄
P34	Polyanion	Bamine Tahya	Understanding the defect in LiVPO₄F: a combined NMR and DFT calculations study
P35	Polyanion	Chotard Jean- Noël	Low temperature NASICON Na ₃ V ₂ (PO ₄) ₃ - An incommensurate modulated crystal structure
P36	Polyanion	Fedotov Stanislav	Structure-property relationships in $A_2Co_{1-x}M_xPO_4F$ (A = Li, Na; M = Mn, Fe) fluoride-phosphate cathode materials for rechargeable batteries
P37	Polyanion	Heath Jennifer	NaFePO4 Cathodes for Sodium-ion Batteries: Why is Olivine More Promising Than Maricite?
P38	Polyanion	Colin Jean- François	A novel Li-battery cathode material: synthesis and characterization of $Li(Mn_{1-x}Co_x)BO_3$
P39	Polyanion	Liivat Anti	Evidence for a >1 electron reaction in Li₂FeSiO₄: an in situ Mössbauer spectroscopy study
P40	Polyanion	Mancini Marilena	Study on the stability of Li₂MnSiO₄ cathode material in different electrolyte systems for Li-ion batteries
P41	Polyanion	Kim Minkyung	Superior rate capability of 4.2V-LiVPO₄F synthesized by scalable and single-step solid-state reaction
P42	Polyanion	Oyama Gosuke	Structure and electrochemical properties of alluaudite-type sodium iron sulfate
P43	Polyanion	Serras Paula	Influence of synthesis method on sodium vanadium fluorophosphates cathodes for Na-ion batteries
P44	Polyanion	Reichardt Martin	Lithium chromium phosphate Li₃Cr₂(PO₄)₃ as cathode material for Li- ion batteries
P45	Polyanion	Zhang Leiting	Influence of humidity on the handling of LiFeSO4F electrode for Li-ion batteries
P46	Negative-Others	Guérin Katia	Surface fluorination of commercial LTO in order to overcome the low electrochemical performances of Li ₂ TiO ₃ set onto LTO
P47	Negative-Others	Balachandran Geethu	Comparison of electrochemical performances and elucidation of electrochemical mechanism of conversion type anodes MFe_2O_4 ($M = Fe$, Co , Ni and Cu) for Li -Ion Batteries
P48	Negative-Others	Bourrioux Samantha	ZnFe₂O₄ nanoparticles synthesis by laser pyrolysis: interest as new anode material for lithium-ion batteries
P49	Negative-Others	Brutti Sergio	The MgH ₂ conversion reaction in a lithium cell: a computational study
P50	Negative-Others	Eames Christopher	Ion Intercalation into Two-dimensional Transition Metal Carbides: are 'MXenes' a Suitable Anode Material for Li-, Na- and Mg-ion Batteries?
P51			
	Negative-Others	George Chandramohan	Improved Li ion kinetics using Carbon Nanotubes as conductive additives in conversion electrodes for Li ion batteries
P52	Negative-Others Negative-Others	-	,

LiBD-7 2015 – "Electrode materials" Arcachon, France June 21-26, 2015

P54	Negative-Others	Miléna Martine	NaSbSn compound as negative material for Na cells at room temperature
P55	Negative-Others	Parzych Grzegorz	Li-Al-Mg as potential anode material for Li-ion batteries
P56	Negative-Others	Periyapperuma Kalani	Reversible Magnesiation of Pb
P57	Negative-Others	Prutsch Denise	Nanoarchitectured Titania as Anode Material for Na-Ion Batteries
P58	Negative-Others	Saurel Damien	Disordered carbons as negative electrode materials for Na-ion batteries
P59	Negative-Others	Silvestri Laura	On the reactivity of Sodium Alanates in lithium batteries
P60	Negative-Others	Silvestri Laura	LiAlH4 and Li₃AlH ₆ as conversion anodes for lithium ion batteries
P61	Negative-Others	Uitz Marlena	Li Insertion Behaviour of Rutile TiO₂ Nanorods as Anode Material in Lithium-Ion Batteries
P62	Negative-Others	Vankova	Characterization of commercial Al alloy as low cost anode material
		Svetoslava	for Li-ion batteries
P63	Negative-Others	Villevieille Claire	Bulk analysis of Sn-electrodes in sodium ion batteries using XRD and first principle calculation
P64	Negative-Others	Vogt Leonie	MSn₂ (M=Fe, Co) intermetallics as anode materials in Na-ion batteries: controlling volume expansion through reaction pathway engineering
P65	Negative-Others	Walter Marc	Nanocrystals as High-Performance Anode Materials for Sodium-ion Batteries
P66	Negative-Others	Wang Luyuan Paul	Laser pyrolyzed SnO₂ nanoparticles as anode material in Sodium ion Batteries
P67	Negative-Others	Yu Yan	How to get a conversion reaction reversible? Lithium storage in metal sulphide nanodots
P68	Negative-Others	Zheng Lituo	Electrochemical Reaction Mechanism of Tin Phosphide with Sodium by Ex-situ X-ray Diffractometry and Mössbauer Effect Spectroscopy
P69	Li-air	Goward Gillian	Characterization of Discharge Products in Metal-Oxygen Batteries by Solid State NMR
P70	Li-air	Guéguen Aurélie	Dynamics of the porous carbonaceous O₂ electrode interface: a combined XPS and OEMS study
P71	Li-air	Lepoivre Florent	In-situ pressure monitoring of Li-Oxygen cells: Towards a better understanding of gas reduction and evolution reactions
P72	Li-air	Zeng Juqin	Optimizing nonaqueous electrolytes for high-performance Li-O₂ batteries
P73	Characterization	Ortiz Gregorio	Comparative view of ions-storage in nanostructured TiO ₂ materials in both non-aqueous and aqueous electrolyte solutions
P74	Characterization	Guérin Katia	Low temperature rhombohedric iron trifluoride with a mesoporous texture for lithium batteries.
P75	Characterization	Guérin Katia	Core-shell Ni-NiF ₂ as cathode materials for secondary lithium batteries
P76	Characterization	Berhaut	LiTDI as electrolyte salt for Li-ion batteries: electrolyte transport
		Christopher	properties and cyclability of Li/Graphite and Li/LiFePO₄ half cells.
P77	Characterization	Bianchini Matteo	Operando Neutron Diffraction Studies of Li-ion Battery Electrodes
P78	Characterization	Cabelguen Pierre- Etienne	Analysis of the active material microstructure constituting the positive electrode in lithium-ion batteries application.
P79	Characterization	Fingerle Mathias	Photoelectron spectroscopy on electrode/solid electrolyte interfaces: Interface formation and energy level alignment
P80	Characterization	Huynh Tan Vu	Transport and Dynamics of Ionic Species in Block Copolymer Electrolytes for Solid-State Lithium Batteries Elucidated by NMR

LiBD-7 2015 – "Electrode materials" Arcachon, France June 21-26, 2015

P81	Characterization	Iadecola Antonella	Vite fait bien fait : electrochemistry on the ROCK beamline
P82	Characterization	Kajiyama Akihisa	Grain Boundary Composition of Cathode Active Materials on Lithium Ion Battery Performance
P83	Characterization	Kimura Yuta	Evaluation of the Effective Reaction Zone in LiCoO ₂ Composite Cathode by Two Dimensional In-situ X-ray Absorption Spectroscopy
P84	Characterization	Nako Yuki	Finite Element Model for Electrical Conduction in Lithium Battery Slurry
P85	Characterization	Pietsch Patrick	Microstructure dynamics in graphite-based electrodes during battery operation
P86	Characterization	Self Julian	In Situ Volume Studies of Li-Ion Cells and Reaction Pathways for Gas Production
P87	Characterization	Takano Mikio	In-situ Mössbauer Spectroscopic Study of the Redox Reactions of a Bacterial Fe-Oxide, L-BIOX
P88	Characterization	Xiong Baokou	Measurement of CO₂ solubility in ionic liquids based electrolytes for lithium-ion batteries
P89	Na-Layered	Carlier Dany	The Nax(Fe,Mn)O₂ layered oxides used in Na Batteries : structural transformations and redox processes
P90	Na-Layered	Delmas Claude	Revisiting the NaxNiO₂ system
P91	Na-Layered	Santos Pena	Effect of the spectator ion, M', on the electrochemical performance of
	•	Jesus	$Na_{0.67}(Mn,M')O_2$ in sodium ion batteries
P92	Na-Layered	Vitoux Laura	Structural rearrangements in sodium layered oxides Na _x MoO₂ during electrochemical sodium (de)intercalation
P93	Na-Layered	Yoshida Jun	Structural investigation of $Na_{0.70}Mn_{0.60}Ni_{0.30}Co_{0.10}O_2$ as positive electrode material for Na-ion batteries
P94	Na-Layered	Freire Mélanie	Amorphous sodium vanadate, A new matrix for high density Na ion batteries
P95	Li-Layered	Brog Jean-Pierre	Nano-lithium cobalt oxide: organometallic precursors as source of high Li-ion diffusion oxides for battery purpose.
P96	Li-Layered	Croguennec Laurence	Insight in the Atomic Structure of Cycled Lithium-rich Layered Oxide $Li_{1.20}Mn_{0.54}Co_{0.13}Ni_{0.13}O_2$ using HAADF STEM and Electron Nano Diffraction
P97	Li-Layered	Dolotko Oleksandr	Structural behavior of LCO Li-ion cells at different temperatures - an in situ neutron diffraction study
P98	Li-Layered	Aurbach Doron	Novel studies of structural and surface modifications of positive electrodes for lithium-ion batteries
P99	Li-Layered	Komine Shigeki	In situ XAFS study on the Ni ²⁺ - Ni ⁴⁺ redox system, LiNi _{0.5} Mn _{0.5} O ₂
P100	Li-Layered	Madec Lenaic	Effect of a Combination of Electrolyte Additives on LiNi _{0.42} Mn _{0.42} Co _{0.16} O ₂ (NMC442)/Graphite Pouch Cell Lifetime: Electrochemical versus XPS analysis
P101	Li-Layered	Mukai Kazuhiko	Unknown magnetism in a well-known Li-battery material
P102	Li-Layered	Pajot Ségolène	Development of a Lithium and Manganese-rich Layered Oxide with Concentration Gradient for High Energy Density Lithium-ion Batteries
P103	Li-Layered	Pradon Alexandre	Li-rich lamellar oxide: Influence of the cycling conditions on voltage decay
P104	Li-Layered	Song Jun Ho	Relationship between Micro-crack Growth and Capacity Fading of Nirich Cathode Materials during Cycling in Lithium Ion Batteries
P105	Li-Layered	Strafela Marc	Microstructural and electrochemical comparison of as deposited and heat treated Li-Ni-Mn-Co-O thin film cathodes for Lithium-ion batteries

LiBD-7 2015 – "Electrode materials" Arcachon, France June 21-26, 2015

P106	Li-Layered	Takeshi	Degradation behavior of charge-discharge performance for
	•	Kobayashi	LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂
P107	Li-Layered	Uchida Shuhei	High-voltage capabilities of NbOx Nanosheets coating to LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ cathode surface
P108	Negative-Si	Ghamouss Fouad	Micro and nanostructured Silicon anodes for Li based microbatteries
P109	Negative-Si	Wilamowska	Silicon Oxycarbide Modified with Divinylbenzene as Anodes for
		Monika	Lithium-lon Batteries
P110	Negative-Si	Haruta Masakazu	Effects of additives on cycle performances of silicon-flake-powder
2444			anodes in glyme/lithium complex electrolytes
P111	Negative-Si	Iaboni Douglas	Li ₁₅ Si ₄ Phase Formation in Si Thin Films
P112	Negative-Si	Ikonen Timo	Effect of particle size on the performance of porous silicon-based anode material in Li-ion battery
P113	Negative-Si	Kang Sehlleier Yee Hwa	Si/CNT/C composite as high-capacity anode material for lithium ion batteries
P114	Negative-Si	Liu Hui	Amorphous Si _{1-x} B _x films for Lithium Ion Anodes
P115	Negative-Si	Maceachern Lauren	Fe-Si-Zn Negative Electrodes for Li-Ion Batteries
P116	Negative-Si	Park Eunjun	Li-storage Characteristics of C-coated Mesoporous SiO _x Using Oil
			Templating as a High Capacity Anode Material for Lithium-ion Battery
P117	Negative-Si	Shuhei Yoshida	Li pre-doping of amorphous silicon electrode in Li-organic complex
			solution
P118	Negative-Si	Sourice Julien	Core shell amorphous silicon-carbon nanoparticles synthesis by
2440		vari i	double stage laser pyrolysis, application to anode material
P119	Negative-Si	Wilamowska Monika	Influence of Polystyrene Addition on Electrochemical Properties, Porosity and Structure of Silicon Oxycarbide Anodes for Li-Ion
		IVIOTIIKa	Batteries
P120	Negative-Si	Wilamowska	Carbon-Rich vs. Carbon-Poor Silicon Oxycarbide Ceramics: Lithium
	-	Monika	Storage Capacity Influenced by Precursor Used for Sol-Gel Synthesis of Polysiloxanes
P121	Negative-Si	Xiao Lisong	Synthesis of silicon nanoparticles and silicon/carbon nanocomposites
			as high performance anodes for lithium-ion batteries
P122	Batteries	Aurbach Doron	Multifunctional Aqueous Binders for High Voltage Lithium-Ion Batteries
P123	Batteries	Brown Zack	Electrochemical behavior of aromatic polyimide binder
P124	Batteries	Demir-Cakan	Development of Aqueous Electrolyte Rechargeable Alkali-
		Rezan	ion/Polysulphide Batteries
P125	Batteries	Hess Michael	Challenges in determining the rate capability of battery materials
P126	Batteries	Jiménez Manero Pablo	Conducting polymer additives for millimeter-thick lithium-ion battery electrodes
P127	Batteries	Koketsu Toshinari	A new Tellurium@CMK-3 composite electrode for Lithium secondary batteries
P128	Batteries	Lang Michael	Investigation of fatigue mechanisms in commercial lithium ion batteries containing blended cathode materials
P129	Batteries	Yu Yan	1D Porous and Electrical Conductive Coated Electrode Materials for Superior Li/Na-ion Storage
P130	Li Organic	Hausbrand René	Electronic structure and electrode properties of an organic cathode
-75	- 0		material: a surface science investigation of TCNQ and its interfaces
P131	Li Organic	Schmidt	Lithium iron methylene diphosphonate, a new organic-inorganic
		Sebastian	hybrid material for Li-ion batteries

LiBD-7 2015 – "Electrode materials" Arcachon, France June 21-26, 2015

P132	Li Organic	Sottmann Jonas	In operando studies of the Prussian Blue Analogue Na _{1.35} Mn[Fe(CN) ₆]0.83-zH ₂ O as promising cathode material for sodium ion batteries
P133	Li Organic	Ahouari Hania	Exploration of new synthetic route and electrochemical behavior vs. Li of iron(III) oxalate tetrahydrate