Posters List

N°	Торіс	Author	Title
P01	Solid State	Burbano Mario	Structure and ionic conductivity of lithium garnets
P02	Solid State	Flamary Florian	Iron disulfide, a high performance positive electrode material in thin film lithium batteries.
P03	Solid State	Kimura Yuta	Evaluation of Li Chemical Potential of Mechanically Stressed Li Ion Batteries Cathodes
P04	Solid State	Loho Christoph	Potential of Novel CO ₂ -Laser Assisted Chemical Vapor Deposition for All-Solid-State Thin-Film Li-Ion Battery Research
P05	Solid State	Pelé Vincent	Iron molybdate as an electrode material for Na and Li thin films batteries
P06	Solid State	Rawlence Michael	Solid State Li ₇ La ₃ Zr ₂ O ₁₂ Thin Film Electrolyte by Pulsed Laser Deposition: Deposition, Crystallization, Near Order Characteristics vs. Lithiation
P07	Solid State	Ritter Helene	Investigations on Lithium/LIPON interfaces for Li-ion microbatteries
P08	Solid State	Tarhouchi Ilyas	<i>Li</i> ₁₀ SnP ₂ S ₁₂ : an electrolyte and electrode material for all-solid state batteries?
P09	Solid State	Katoh Yuki	Ionic conductivities of solid solutions with LGPS-type crystal structure
P10	Interface	Chen Zonghai	Investigating Parasitic Reactions in Lithium Batteries
P11	Interface	Downie Laura	Effect of electrolyte solvents and additives at high voltage studied using isothermal microcalorimetry and ultra high precision coulometry
P12	Interface	Freunberger Stefan	Long chain alkyl carbonates as SEI modifiers: Ion transport, structure and electrochemistry of the parent electrolytes
P13	Interface	Gonser Andreas	Slurry based composite electrodes vs. Si thin films - SEI investigations
P14	Interface	He Minglong	In situ Gas Analysis of Li ₄ Ti ₅ O ₁₂ Based Electrodes at Elevated Temperatures
P15	Interface	Horstmann Birger	Morphology of Solid Electrolyte Interphase: A Model Based Approach
P16	Interface	Koyama Yukinori	Density functional study on LiCoO ₂ surfaces
P17	Interface	Schulz Natalia	XPS analysis of composite cathodes: SEI-formation at different depth and spectral interpretation
P18	Interface	Späth Thomas	Towards a more fundamental understanding of SEI formation: LiCoO ₂ -solvent interaction studied with surface science methods
P19	Interface	Suzuki Kota	Analysis of Coating Effects on LiMn $_2O_4$ Epitaxial Thin Film Electrode
P20	Li- sulfur	Conder Joanna	Taming the polysulfide shuttle in Li-S battery
P21	Li- sulfur	Moog Iona	Li-S batteries in Johnson Matthey
P22	Olivine	Anne Henri	New insights into the kinetics of Na insertion and extraction into the FePO ₄ /NaFePO ₄ system
P23	Olivine	Gounder Adiel	Synthesis and Characterization of LiMnPO₄ Cathode Material Prepared by a Novel Sol-Gel Method
P24	Olivine	Kwon Nam Hee	Opportunities and Risks of Nano-LiMnPO₄: ionic diffusivity and life cycle assessments
P25	Olivine	Manzi Jessica	Self-discharge in LiCoPO₄ electrodes
P26	Olivine	Mori Takuya	Origin of High Rate Capability of LiFePO₄ Investigated by Time- resolved X-ray Diffraction at Various Operating Temperatures
P27	Spinel	Boulet Lucien	Operando neutron powder diffraction of LiNi _{0.5} Mn _{1.5} O ₄ vs. graphite performed in a cylindrical cell
P28	Spinel	Dräger Christoph	Titanium substituted LiCoTi _x Mn _{1-x} O ₄ : in situ powder diffraction on high-voltage spinels

P29	Spinel	Komine Shigeki	Electrochemical Properties of Thick, Dense Single Crystal Electrodes Fabricated by Flux-coating
P30	Spinel	Lee Jung Hwa	High electrochemical performance of high voltage LiNi _{0.5} Mn _{1.5} O ₄ by decoupling the Ni/Mn disordering from the presence of Mn ³⁺ ions
P31	Spinel	Sonoda Takashi	Development of Acetylene Black for High voltage based Lithium-ion secondary battery
P32	Spinel	Seidel Matthias	Characterization of LiNi _{0.5} Mn _{1.5} O ₄ synthesized using different acetate/nitrate-precursors
P33	Spinel	Younesi Reza	Electrochemical and surface properties of the high voltage spinel cathode material LiCr _{0.2} Ni _{0.4} Mn _{1.4} O ₄
P34	Polyanion	Bamine Tahya	Understanding the defect in LiVPO₄F: a combined NMR and DFT calculations study
P35	Polyanion	Chotard Jean- Noël	Low temperature NASICON Na ₃ V ₂ (PO ₄) ₃ - An incommensurate modulated crystal structure
P36	Polyanion	Fedotov Stanislav	Structure-property relationships in A ₂ Co _{1-x} M _x PO ₄ F (A = Li, Na; M = Mn, Fe) fluoride-phosphate cathode materials for rechargeable batteries
P37	Polyanion	Heath Jennifer	NaFePO4 Cathodes for Sodium-ion Batteries: Why is Olivine More Promising Than Maricite?
P38	Polyanion	Colin Jean- François	A novel Li-battery cathode material: synthesis and characterization of Li(Mn _{1-x} Co _x)BO ₃
P39	Polyanion	Liivat Anti	Evidence for a >1 electron reaction in Li ₂ FeSiO ₄ : an in situ Mössbauer spectroscopy study
P40	Polyanion	Mancini Marilena	Study on the stability of Li₂MnSiO₄ cathode material in different electrolyte systems for Li-ion batteries
P41	Polyanion	Kim Minkyung	Superior rate capability of 4.2V-LiVPO₄F synthesized by scalable and single-step solid-state reaction
P42	Polyanion	Oyama Gosuke	Structure and electrochemical properties of alluaudite-type sodium iron sulfate
P43	Polyanion	Serras Paula	Influence of synthesis method on sodium vanadium fluorophosphates cathodes for Na-ion batteries
P44	Polyanion	Reichardt Martin	Lithium chromium phosphate Li ₃ Cr ₂ (PO ₄) ₃ as cathode material for Li- ion batteries
P45	Polyanion	Zhang Leiting	Influence of humidity on the handling of LiFeSO4F electrode for Li-ion batteries
P46	Negative-Others	Guérin Katia	Surface fluorination of commercial LTO in order to overcome the low electrochemical performances of Li_2TiO_3 set onto LTO
P47	Negative-Others	Balachandran Geethu	Comparison of electrochemical performances and elucidation of electrochemical mechanism of conversion type anodes MFe_2O_4 ($M = Fe$, Co , Ni and Cu) for Li-Ion Batteries
P48	Negative-Others	Bourrioux Samantha	$ZnFe_2O_4$ nanoparticles synthesis by laser pyrolysis: interest as new anode material for lithium-ion batteries
P49	Negative-Others	Brutti Sergio	The MgH ₂ conversion reaction in a lithium cell: a computational study
P50	Negative-Others	Eames Christopher	Ion Intercalation into Two-dimensional Transition Metal Carbides: are 'MXenes' a Suitable Anode Material for Li-, Na- and Mg-ion Batteries?
P51	Negative-Others	George Chandramohan	Improved Li ion kinetics using Carbon Nanotubes as conductive additives in conversion electrodes for Li ion batteries
P52	Negative-Others	Klingeler Rüdiger	Mn3O4 nanoparticles inside carbon nanotubes: A new high- performance anode material for lithium-ion batteries
P53	Negative-Others	Maharajan Sivarajakumar	Sn/C composite anode materials for lithium ion batteries

P54	Negative-Others	Miléna Martine	NaSbSn compound as negative material for Na cells at room
P55	Negative-Others	Parzych Grzegorz	Li-Al-Ma as notential anode material for Li-ion batteries
D56	Negative Others	Perivanneruma	Peversible Magneciation of Ph
P 30	Negative-Others	Kalani	
P57	Negative-Others	Prutsch Denise	Nanoarchitectured Titania as Anode Material for Na-Ion Batteries
P58	Negative-Others	Saurel Damien	Disordered carbons as negative electrode materials for Na-ion batteries
P59	Negative-Others	Silvestri Laura	On the reactivity of Sodium Alanates in lithium batteries
P60	Negative-Others	Silvestri Laura	LiAlH4 and Li ₃ AlH ₆ as conversion anodes for lithium ion batteries
P61	Negative-Others	Uitz Marlena	Li Insertion Behaviour of Rutile TiO ₂ Nanorods as Anode Material in Lithium-Ion Batteries
P62	Negative-Others	Vankova	Characterization of commercial AI alloy as low cost anode material
		Svetoslava	for Li-ion batteries
P63	Negative-Others	Villevieille Claire	Bulk analysis of Sn-electrodes in sodium ion batteries using XRD and first principle calculation
P64	Negative-Others	Vogt Leonie	MSn ₂ (M=Fe, Co) intermetallics as anode materials in Na-ion
			engineering
P65	Negative-Others	Walter Marc	Nanocrystals as High-Performance Anode Materials for Sodium-ion Batteries
P66	Negative-Others	Wang Luyuan	Laser pyrolyzed SnO_2 nanoparticles as anode material in Sodium ion
		Paul	Batteries
P67	Negative-Others	Yu Yan	How to get a conversion reaction reversible? Lithium storage in metal sulphide nanodots
P68	Negative-Others	Zheng Lituo	Electrochemical Reaction Mechanism of Tin Phosphide with Sodium
			by Ex-situ X-ray Diffractometry and Mössbauer Effect Spectroscopy
P69	Li-air	Goward Gillian	Characterization of Discharge Products in Metal-Oxygen Batteries by Solid State NMR
P70	Li-air	Guéguen Aurélie	Dynamics of the porous carbonaceous O ₂ electrode interface: a combined XPS and OEMS study
P71	Li-air	Lepoivre Florent	In-situ pressure monitoring of Li-Oxygen cells: Towards a better
			understanding of gas reduction and evolution reactions
P72	Li-air	Zeng Juqin	Optimizing nonaqueous electrolytes for high-performance Li-O ₂ batteries
P73	Characterization	Ortiz Gregorio	Comparative view of ions-storage in nanostructured TiO_2 materials in
			both non-aqueous and aqueous electrolyte solutions
P74	Characterization	Guérin Katia	Low temperature rhombohedric iron trifluoride with a mesoporous texture for lithium batteries.
P75	Characterization	Guérin Katia	Core-shell Ni-NiF ₂ as cathode materials for secondary lithium batteries
P76	Characterization	Berhaut Christopher	LiTDI as electrolyte salt for Li-ion batteries: electrolyte transport properties and cyclability of Li/Graphite and Li/LiFePO ₄ half cells.
P77	Characterization	Bianchini Matteo	Operando Neutron Diffraction Studies of Li-ion Battery Electrodes
P78	Characterization	Cabelguen Pierre- Etienne	Analysis of the active material microstructure constituting the positive electrode in lithium-ion batteries application.
P79	Characterization	Fingerle Mathias	Photoelectron spectroscopy on electrode/solid electrolyte interfaces:
000	Characteriation		Interjuce formation and energy level alignment
P80	Characterization	nuynn Tan Vu	Electrolytes for Solid-State Lithium Batteries Elucidated by NMR
P81	Characterization	Iadecola Antonella	Vite fait bien fait : electrochemistry on the ROCK beamline

P82	Characterization	Kajiyama Akihisa	Grain Boundary Composition of Cathode Active Materials on Lithium Ion Battery Performance
P83	Characterization	Kimura Yuta	Evaluation of the Effective Reaction Zone in LiCo Ω_2 Composite
105	Characterization		Cathode by Two Dimensional In-situ X-ray Absorption Spectroscopy
P84	Characterization	Nako Yuki	Finite Element Model for Electrical Conduction in Lithium Battery
			Slurry
P85	Characterization	Pietsch Patrick	Microstructure dynamics in graphite-based electrodes during battery
			operation
P86	Characterization	Self Julian	In Situ Volume Studies of Li-Ion Cells and Reaction Pathways for Gas
			Production
P87	Characterization	Takano Mikio	In-situ Mössbauer Spectroscopic Study of the Redox Reactions of a
			Bacterial Fe-Oxide, L-BIOX
P88	Characterization	Xiong Baokou	Measurement of CO_2 solubility in ionic liquids based electrolytes for
000	Nalayorad	Carlier Dany	The Nex (Ee Mp)O Javared evides used in Na Patteries : structural
F03	Nd-Layereu		transformations and reday processes
P90	Na-Lavered	Delmas Claude	Revisiting the NaxNiO ₂ system
P91	Na-Lavered	Santos Pena	Effect of the spectator ion M' on the electrochemical performance of
1.51	Na Layerea	lesus	$Na_{\alpha,\alpha}$ (Mn M') Ω_{α} in sodium ion batteries
P92	Na-Lavered	Vitoux Laura	Structural rearrangements in sodium layered oxides $Na_{0}MoO_{2}$ during
	itu Luyereu		electrochemical sodium (de)intercalation
P93	Na-Layered	Yoshida Jun	Structural investigation of $Na_{0.70}Mn_{0.60}Ni_{0.30}Co_{0.10}O_2$ as positive
	,		electrode material for Na-ion batteries
P94	Na-Layered	Freire Mélanie	Amorphous sodium vanadate, A new matrix for high density Na ion
			batteries
P95	Li-Layered	Brog Jean-Pierre	Nano-lithium cobalt oxide: organometallic precursors as source of
			high Li-ion diffusion oxides for battery purpose.
P96	Li-Layered	Croguennec	Insight in the Atomic Structure of Cycled Lithium-rich Layered Oxide
		Laurence	Li _{1.20} Mn _{0.54} Co _{0.13} Ni _{0.13} O ₂ using HAADF STEM and Electron Nano
			Diffraction
P97	LI-Layered	DOIOTKO Oleksandr	Structural benavior of LCO LI-Ion cells at alfferent temperatures - an in situ neutron diffraction study
P98	Li-Lavered	Aurbach Doron	Novel studies of structural and surface modifications of positive
150			electrodes for lithium-ion batteries
P99	Li-Layered	Komine Shigeki	In situ XAFS study on the Ni ²⁺ - Ni ⁴⁺ redox system, LiNi _{0.5} Mn _{0.5} O ₂
P100	Li-Lavered	Madec Lenaic	Effect of a Combination of Electrolyte Additives on
			LiNi _{0.42} Mn _{0.42} Co _{0.16} O ₂ (NMC442)/Graphite Pouch Cell Lifetime:
			Electrochemical versus XPS analysis
P101	Li-Layered	Mukai Kazuhiko	Unknown magnetism in a well-known Li-battery material
P102	Li-Layered	Pajot Ségolène	Development of a Lithium and Manganese-rich Layered Oxide with
			Concentration Gradient for High Energy Density Lithium-ion Batteries
P103	Li-Layered	Pradon Alexandre	Li-rich lamellar oxide: Influence of the cycling conditions on voltage
			decay
P104	Li-Layered	Song Jun Ho	Relationship between Micro-crack Growth and Capacity Fading of Ni-
D105	Lilouanad	Ctrofolo More	rich Cathode Materials during Cycling in Litnium ion Batteries
P105	LI-Layered	Stratela Marc	Microstructural and electrochemical comparison of as deposited and
			hatteries
P106	Li-Lavered	Takeshi	Degradation behavior of charge-discharge performance for
. 100		Kobayashi	$LiNi_0 {}_5Co_0 {}_2Mn_0 {}_3O_2$
P107	Li-Layered	Uchida Shuhei	High-voltage capabilities of NbOx Nanosheets coating to
	·		LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ cathode surface
P108	Negative-Si	Ghamouss Fouad	Micro and nanostructured Silicon anodes for Li based microbatteries

LiBD-7 2015 – "Electrode materials" Arcachon, France June 21-26, 2015

P109	Negative-Si	Wilamowska Monika	Silicon Oxycarbide Modified with Divinylbenzene as Anodes for Lithium-Ion Batteries
P110	Negative-Si	Haruta Masakazu	Effects of additives on cycle performances of silicon-flake-powder anodes in alvme/lithium complex electrolytes
P111	Negative-Si	laboni Douglas	$Li_{15}Si_4$ Phase Formation in Si Thin Films
P112	Negative-Si	Ikonen Timo	<i>Effect of particle size on the performance of porous silicon-based anode material in Li-ion battery</i>
P113	Negative-Si	Kang Sehlleier Yee Hwa	<i>Si/CNT/C</i> composite as high-capacity anode material for lithium ion batteries
P114	Negative-Si	Liu Hui	Amorphous Si _{1-x} B _x films for Lithium Ion Anodes
P115	Negative-Si	Maceachern Lauren	Fe-Si-Zn Negative Electrodes for Li-Ion Batteries
P116	Negative-Si	Park Eunjun	Li-storage Characteristics of C-coated Mesoporous SiO _x Using Oil Templating as a High Capacity Anode Material for Lithium-ion Battery
P117	Negative-Si	Shuhei Yoshida	Li pre-doping of amorphous silicon electrode in Li-organic complex solution
P118	Negative-Si	Sourice Julien	Core shell amorphous silicon-carbon nanoparticles synthesis by double stage laser pyrolysis, application to anode material
P119	Negative-Si	Wilamowska Monika	Influence of Polystyrene Addition on Electrochemical Properties, Porosity and Structure of Silicon Oxycarbide Anodes for Li-Ion Batteries
P120	Negative-Si	Wilamowska Monika	Carbon-Rich vs. Carbon-Poor Silicon Oxycarbide Ceramics: Lithium Storage Capacity Influenced by Precursor Used for Sol-Gel Synthesis of Polysiloxanes
P121	Negative-Si	Xiao Lisong	<i>Synthesis of silicon nanoparticles and silicon/carbon nanocomposites as high performance anodes for lithium-ion batteries</i>
P122	Batteries	Aurbach Doron	Multifunctional Aqueous Binders for High Voltage Lithium-Ion Batteries
P123	Batteries	Brown Zack	Electrochemical behavior of aromatic polyimide binder
P124	Batteries	Demir-Cakan Rezan	Development of Aqueous Electrolyte Rechargeable Alkali- ion/Polysulphide Batteries
P125	Batteries	Hess Michael	Challenges in determining the rate capability of battery materials
P126	Batteries	Jiménez Manero Pablo	Conducting polymer additives for millimeter-thick lithium-ion battery electrodes
P127	Batteries	Koketsu Toshinari	A new Tellurium@CMK-3 composite electrode for Lithium secondary batteries
P128	Batteries	Lang Michael	Investigation of fatigue mechanisms in commercial lithium ion batteries containing blended cathode materials
P129	Batteries	Yu Yan	1D Porous and Electrical Conductive Coated Electrode Materials for Superior Li/Na-ion Storage
P130	Li Organic	Hausbrand René	Electronic structure and electrode properties of an organic cathode material: a surface science investigation of TCNQ and its interfaces
P131	Li Organic	Schmidt Sebastian	Lithium iron methylene diphosphonate, a new organic-inorganic hybrid material for Li-ion batteries
P132	Li Organic	Sottmann Jonas	In operando studies of the Prussian Blue Analogue Na _{1.35} Mn[Fe(CN) ₆]0.83-zH ₂ O as promising cathode material for sodium ion batteries
P133	Li Organic	Ahouari Hania	Exploration of new synthetic route and electrochemical behavior vs. Li of iron(III) oxalate tetrahydrate